

DVB Performance

The DM240XR is DVB-S2 ready and can easily be upgraded in the field. The DM240XR provides a comprehensive set of advanced S2 features. The DM240XR extends its dominance in broadcast applications through increased data rate capability and the addition of 16-APSK and 32-APSK support. Proven performance operating near Shannon's limit offers results with 30% better bandwidth efficiencies and carrier to noise figures below the noise floor.

The DM240XR includes the ability to select the output frequency of 70/140 MHz or L-Band operation without any hardware modifications. The modulator offers a frequency agile IF output from 50 to 90 MHz, 100 to 180 MHz and 950 to 2050 MHz in 100 Hz steps. The DM240XR offers high data rates (up to 190 Mbps for the DVB-S2 and 238 Mbps for the DVB-S), and the most flexible modulation schemes available (QPSK, 8-PSK, 16-QAM, 16-APSK and 32-APSK).

The DM240XR AutoEQ[™] feature supports amplitude and group delay equalization over the satellite system. When installed, AutoEQ offers the ability to compensate the overall system group delay and amplitude flatness by pre-correcting the uplink carrier. This eliminates the need for external group delay/amplitude equalizers and makes possible equalization at L-Band. The AutoEQ will operate over the full transponder from a symbol rate of 10.1 Msps to 45 Msps.

The DM240XR offers the flexibility to support up to three different data interfaces. The XR includes a built-in ASI interface along with the Plug-In Interface Card (PIIC) system which allows for the selection of two additional data interfaces that can be easily upgraded in the field. Supported interfaces include DVB-ASI, HSSI, RS-422, M2P/DVB, LVDS M2P/DVB and Ethernet (Pro-MPEG CoP 3 and Bridge modes).

The powerful onboard Monitor and Control (M&C) processor has the unique capability to upgrade features via the front panel or Web interface. Features can be added to the installed equipment base with extreme ease, allowing enhancements with changes in service while lowering initial installation budgets.

Remote interfacing can be achieved through one of three onboard connections: Ethernet (Web or SNMP), RS-485, or RS-232. Additionally, FTP capability for firmware upgrades allows a quick, reliable method to update installed systems. The front panel offers push-button control of all features and a backlit LCD display.

The DM240XR supports various redundancy schemes. The Built-In PIIC system supports 1:1 data redundancy, allowing the user to set data interface priorities. The RCS11 is a 1RU chassis providing superior system reliability that offers 1:1 redundancy control for both IF and data. The RRS11 or STS11 supports 1:1 redundancy for IF or L-Band signals. The DM240XR interoperates with the RRS11/STS11 supplying digital logic and voltage to the redundancy unit.

Features

- DVB-S and DVB-S2 ready
- DVB-S2 data rates up to 190 Mbps
- DVB-S2 CM, VCM & ACM support
- DVB-S data rates up to 238 Mbps
- QPSK, 8-PSK,16-QAM, 16-APSK, 32-APSK operation
- Powerful LDPC with BCH coding
- AutoEQ group delay and amplitude equalization
- Frequency-agile 50 to 90, 100 to 180, and 950 to 2050 MHz
- ETSI EN 302 307 (DVB-S2), ETSI EN 301 210 (DVB-S)
- ETSI EN 300 421, and ITU-1294 System B (DSS)
- Built-in ASI data interface
- Monitor port available
- · Web browser user interface

Typical Users

- Broadcasters
- Internet Service Providers
- Enterprise

Common Applications

- Broadband Interactive Services
- Broadcast Content Distribution
- Digital Cinema
- Digital Signage
- Direct To Home
- Disaster Recovery & Emergency Communications
- Enterprise
- G.703 Trunking
- High Speed Content Delivery
- IP Trunking
- IPTV / Business Television
- Satellite News Gathering

AutoEQ[™] Automatic Uplink Equalization System

The AutoEQ Automatic Uplink Equalization System is the most user friendly satellite communication system equalizer available. Unlike legacy analog equalizers which are difficult to adjust, the AutoEQ system is extremely easy to use. Transponder equalization is done in the digital domain; it is very accurate and can compensate for amplitude and group delay variations that are nearly impossible to compensate for with an analog equalizer.

The AutoEQ consists of special software built into the DM240XR coupled with a special digital receiver on a PIIC card. The receiver analyzes the signal path while the software computes the compensating equalizer values. Equalizing the link typically takes less than 2 minutes and can be done at the front panel or remotely.

A remote receiver capability is also supported for those systems where the DM240XR hub cannot see the return path from the distant end. Remote calibration is done by simply connecting and configuring the Ethernet control ports of the modulator and remote receiver to a network with internet access. The DM240XR takes care of the rest.

The AutoEQ Automatic Uplink Equalization System supports single channel per carrier (SCPC) equalization of group delay and amplitude over the entire satellite frequency range.

AutoEQ works with all modulation and coding types supported by the DM240XR (i.e. QPSK, 8-PSK, 16-QAM for DVB-S and QPSK, 8-PSK, 16-APSK, and 32-APSK for DVB-S2). The BER/bandwidth improvement is greater as the level of modulation increases.

The equalization process is nearly independent of receive signal to noise ratio. Accurate automatic equalization is possible down to the lowest specified levels of Eb/No associated with each modulation and coding type supported by the DM240XR.

The equalizer is based on the generation of complex coefficients. What this means is that it can even compensate for amplitude or group delay that is not symmetric over the carrier frequency spectrum, as would be the case if two independent carriers were placed on one transponder.

Up to 32 sets of equalization parameters can be stored within the DM240XR. This allows a DM240XR to be preconfigured for multiple carriers and multiple transponders.

Should the satellite uplink parameters change, recalibration of the AutoEQ can be easily initialized at any time, allowing for maximum flexibility for the uplink earth station.

The end result is greatly improved bandwidth and power utilization of your satellite transponder.

Features

- Full or partial transponder (complex) equalization
- Digitized transponder characterization, plug and play
- No external adjustments required
- Easily upgradable into existing DMD240XRs
- Closed loop equalization using a plug-In PIIC receiver
- Supports all DM240XR modulation and frequency parameters up to 45 Msps
- Capable of multiplexing LNB power

Specifications

IE	Interface
11	ınterrace

II IIICOITAGO	
TX IF	50 to 180 MHz (70/140 MHz)
17.11	950 to 2050 MHz L-Band
IF Step Size	100 Hz
Frequency Stability	3 ppm
Power Output	0 to -25 dBm
Power Step Size	0.1 dB
Power Output Accuracy	± 1.0 dB
Power Output Stability	± 0.5 dB
Carrier Mute	-55 dB
Spurious:	-55 dBc, In-band
Spurious:	-45 dBc, Out-of-band
Output Impedance	75 Ohm (70/140 MHz),
Output Impedance	50 Ohm (L-Band)
Return Loss	20 dB (70/140 MHz)
Retuin Loss	14 dB (L-Band)
	1 kHz -73 dBc
Phase Noise	10 kHz -83 dBc
i ilase ivoise	100 kHz -100 dBc
	1 MHz -120 dBc
Output Connector	BNC female (70/140 MHz),
Output Connector	SMA female (L-Band)
IF Monitor	SMA female
External Reference	1, 2, 5, 10 MHz better than ±1 ppm,
External Reference	1.5 to 10 Vp-p, 50 Ohms

Baseband (DVB-S) Per ETSI EN 301 210

Data Rate .	1 to 238 in 1 bps steps
Symbol Rate	1-68 Msps mMaximum
Inner FEC Code	PTCM (8-PSK, 16-QAM), QPSK (Viterbi)
Code Rates	QPSK 1/2, 2/3, 3/4, 5/6, 7/8 8-PSK 2/3, 5/6, 8/9 16-QAM 3/4, 7/8
Outer Code	Reed-Solomon (204, 188, T=8)
Interleaving	Convolutional, I =12
Data Scrambling	Per EN 300-421
Terrestrial Framing	204, 188, none

Baseband (DVB-S2) PER ETSI EN 302 307

Modulation Types QPSK, 8-PSK, 16-APSK, 32-APSK		
QPSK, 8-PSK, 16-APSK, 32-APSK		
CCM, ACM, VCM		
1 to 80 Mbps in 1 bps steps (QPSK)		
2 to 118 Mbps in 1 bps steps (8-PSK)		
2.6 to 160 Mbps in 1 bps steps (16-APSK)		
3.5 to 190 Mbps in 1 bps steps (32-APSK)		
1 to 45 Msps maximum		
188 (1 Sync Byte, 187 payload bytes)		
64800 bits, 16200 bits		
BCH + LDPC		
Block Interleaver, Per ETSI EN 302 307		
QPSK:1/4,1/3, 2/5,1/2,3/5, 2/3, 3/4, 4/5, 5/6, 8/9,		
9/10		
8-PSK: 2/3, 3/4, 3/5, 5/6, 8/9, 9/10		
16-APSK: 2/3, 3/4, 4/5, 5/6, 8/9, 9/10		
32-APSK: 3/4, 4/5, 5/6, 8/9, 9/10		
Square root raised cosine 0.20, 0.25, 0.35		
D-1111 400		
Better than 400 ppm		
Internal 2 ¹⁵ -1 and 2 ²³ -1		
Pseudo-random number generator		
i		
10 ppm		

Monitor & Control

	Serial RS-485 (remote) and RS-232 (germinal),
Interface	Ethernet 10/100Base-T (SNMP v1/v2 and Web
	browser)

Parameters Controlled	 Test modes IF frequency IF output level IF output on/off Data rate Symbol rate Clock polarity Data polarity 	 Inner code rate Modulation Rolloff Pilot symbols Gold code seq Terr framing Sat framing
Parameters Monitored	Faults (current & latched Alarms)Supply voltages	

Optional Interfaces

	Serial	DVB-ASI, G703, HSSI
	Parallel	RS-422 (M2P, DVB), LVDS (M2P, DVB), DSS
	Ethernet	100/1000Base-T (PRO-MPEG COP3/R2 & BRIDGE Mode)
	AutoEQ™	Amplitude and group delay equalization

Physical & Environmental

Prime Power	100 - 240 VAC, 50 - 60 Hz, 40 W maximum
Operating Temperature	0 to 50°C
Operating Humidity	Up to 95%, non-condensing
Storage Temperature	-20 to 70°C
Storage Humidity	Up to 99%, non-condensing
Weight	10 lbs (4 kg)
Dimensions (1RU) (height x width x depth)	1.75" x 19" x 17" 4.45 x 48.3 x 43.2 (cm)

Configuration Series DVB-S

Series 100	1 - 10 Msps, QPSK
Series 200	1 - 45 Msps, QPSK
Series 300:	1 - 45 Msps, QPSK/8-PSK
Series 400	1 - 68 Msps, QPSK/8-PSK/16-QAM

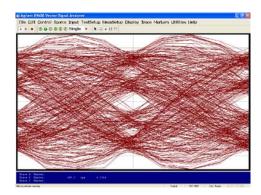
Configuration Series DVB-S2

Series 100	1 to 10 Msps, QPSK
Series 200	1 to 45 Msps, QPSK
Series 300	1 to 45 Msps, QPSK/8-PSK
Series 400	1 to 45 Msps, QPSK/8-PSK/16-APSK
Series 500	1 to 45 Msps, QPSK/8-PSK/16-APSK/32-APSK

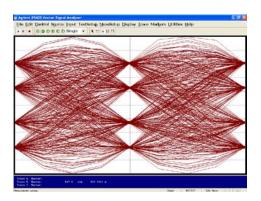
AutoEQ[™] Specifications Demodulator Input (PIIC Card Receiver)

Input Frequency	950-1750 MHz
Input Power	-45 to -20 dBm
Input Impedance	50 Ohm (optional 75 Ohm F)
Input Connector	SMA-F (optional F-type)
Es/No	0 dB min.

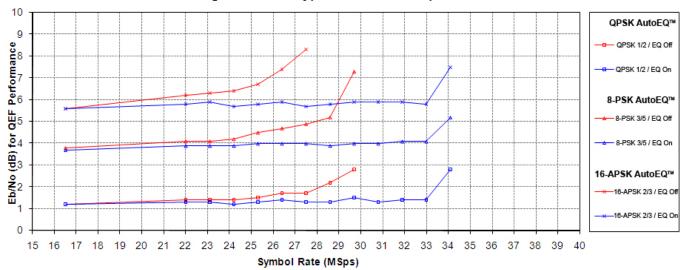
LNB DC Inject


Purpose	Used to diplex DC power onto RF RX connector
Input Connector	PP3-002A 5.5mm x 2.1mm x 9.5mm in-line DC power plug
Input Voltage	28 Volts max.
Input Current	0.5 Amps max.

DM240XR Monitor and Control


	Equalizer	Enabled, disabled
	RX IF	950-1750 MHz
	EQ Calibration	Reference acquire, calibration
	EQ Receiver	Local, remote
	EQ Select	1-32 coefficient sets
	EQ Rename	1-32 coefficient sets
	EQ Delete	1-32 coefficient sets
	EQ Restore	Entire AutoEQ™ table

AutoEQ[™] System Performance


Received 8-PSK Over Typical Satellite without AutoEQ™

Received 8-PSK Over Typical Satellite with AutoEQ™

AutoEQ™ Performance Comparison Single Carrier on typical 36 MHz Transponder

