Power System & Environment Monitoring (PSEM) Solution

Henry Huang (ENP China)

E-Mail: huangren@emersonnetwork.com.cn

Mobile: 86-13923728821

Index

- 1. Architecture of PSEM
- 2. Site solution
- 3. Communication
- 4. Capacity
- 5. Management function
- 6. Application of PSEM
- 7. Roadmap

Practical Problems

MSC/BSC

- 2% of sites have a severe disaster each year
- 40% of disasters take 12 hours or longer time to be found out from sign to occur.
- 60% of them can be identified and recovered within 24 hours.

BTS

- 65% of downtime or failures is caused by power facility problem.
- 85% of failure take 12hours or longer time to be found out, almost via subscriber complaint, or routine inspection by maintenance team.
- 80% of them take more than 24 hours to identify and recover on site.

What We Can Do

- Monitor the operation status in real-time
- Response the emergency quickly
- Prevent disaster proactively
- Manage maintenance work-flow efficiently
- Integrate and unify various alarm systems
- Simplify statistics, plan and report
- Optimized design for telecommunication infrastructure
- Reduce operation cost

PSEM Architecture

SC: Supervision Center – Network Management and Operation Center

SS: Supervision station – Routine Maintenance Center SU: Supervision Unit – MSC / Transmission / BTS sites

SM: Supervision Module

PSEM Architecture

Index

- 1. Architecture of PSEM

2. Site solution

- 3. Communication
- 4. Capacity
- 5. Management function
- 6. Application of PSEM
- 7. Roadmap

Telecom Application

Site Controller - IDU

IDU: Integrated Data Unit processes all data from intelligent equipments and sensors.

Optional Module for IDU-HOST

IDU-BAT module: Each battery monitoring module for 24/48 cells of battery. Can support 2V/6V/12V battery voltage signal.

IDU-BRG module: Transmission function module for E1 transmission. Must be configured when using E1.

- 1. Only 2 optional modules can be configured in 1 IDU simultaneously.
- 2. Only 1 BAT module or COM module can be configured when using E1 for using 1 BRG module.

Monitoring of Intelligent Equipment

IDU-Host has 4 serial ports, which is used to connect intelligent equipment into the system.

Intelligent Equipment Supported

DC power:

Emerson (including legacy products from Ericsson, Huawei, Nortel, Marconi), Eltek, Delta(Ascom), PowerOne, Benning, Switchtec, Saft, Argus...

•UPS:

ABB(APC), Liebert, Delta, Exide, MGE, Chloride . . .

Air conditioner:

Liebert (Hiross), RC, Atlas, AirFlow, Isovell, UN, DaiKin, Denco, Stulz, AireDale, Emicon • • •

•Generators:

Caterpiler, Cummins, Wilson, Simpson, Galaxy, Detroit, Auto • • •

others:

PSEM is able to monitor over 800 types of intelligent devices in addition to Emerson equipment.

Note: The protocol of 3rd part equipments shall be provided by Operator.

Monitoring of Non-Intelligent Equipment

Network Power

Generator set

Intelligent Generator

	Vendor
1	Caterpillar
2	Stamp Ford
3	Deutz Genepack

Diesel Level for Generator

Rectifier

PAC

Interface	card
micomaco	Car

	Vendor
1	Liebert
2	RC
3	Hirros

Non-Intelligent PAC

Temperature Humidity sensor

BTS solution

IDU Family

✓IDU-Host

- 16-channel DI/AI inputs
- 4 relay outputs
- 4 serial ports, maximum 8 with an IDU-COM
- Monitoring 1 or 2 battery strings with a IDU-BAT
- Ethernet communication
- 2 extended slots all kinds of functional card
- 1 USB port
- I2C interface for low cost temperature & humidity sensor connecting

✓ IPLU1202

- 6 General IO
- 1 Battery String Total Voltage
- 1 DO
- 1 I2C Temperature and Humidity Sensor Interface
- 2 Intelligent Serial Ports
- Ethernet Communication
- E1 Communication
- 1 USB Video

Index

- 1. Architecture of PSEM
- 2. Site solution

- 3. Communication
- 4. Capacity
- 5. Management function
- 6. Application of PSEM
- 7. Roadmap

Communication --- from BTS to SC via IP Network

Communication --- via Wireless

Communication 1 --- via GPRS

Communication 2 --- via GPRS

Index

- 1. Architecture of PSEM
- 2. Site solution
- 3. Communication

- 4. Management function
- 5. Application of PSEM
- 6. Roadmap

Capacity of PSEM Using IDU

- One server is able to monitor total about 5000BTS
- One IDU is able to monitor about 12 types of device.
- PSEM can be expanded by to add number of servers to n * 5000 BTS.

Functions of Software

Functions of PSEM software

Electronic site map and free navigation

Simply and exactly remote on- line configuration, monitoring and trouble ticketing

Network Power

Real time monitor all sites and equipments simultaneously

Functions of PSEM software

Outage power allocation such as intelligent distribution of Gen-sets when input power outage happens

Functions of PSEM software

Facility trouble shooting expert system

3rd party maintenance compliance management

Network Power

Functions of PSEM

Preventive/predictive maintenance by data statistics and analysis Equipment life cycle and asset management

Network Power

Efficient tools for backup power system / network optimization

Functions of PSEM

Economic video system for theft control and personnel compliance management

Both USB camera and IP camera are available

Current CCTV integration by using original camera

Functions of PSEM

Self-diagnosis help to ensure the stability of system

Functions of PSEM----Energy management

Network Power

Diesel consumption management

Diesel Consumption:

$$\triangle V = (h1-h2) * S$$

	month				
running times	1	2	3		n
Diesel (liter)	L1	L2	L3	******	Ln

month	1	2	3	*****	12
BTS1	L1	L2	L3		Ln
BTS2	L1	L2	L3		Ln
BTS3					
i					

Air conditioner management

Flexible field logic control strategies

Efficient energy cost cut-off solutions

Energy Saving Mode

Temp	AC 1	AC 2	DC Fan
Mains failure	0	0	1
Over 35°C	0	0	1
28℃- 35℃	1	1	0
 23- 28℃	0	1	
Switch running	1	0	
running	28 ℃	23 ℃	0
Based on °C	on	off	
Below 23 ℃	0	0	0

Optimize set-point to control air conditioners to reduces energy cost for AC by 15% per site per year

Mains/DC bill management

- BTS site management
- Payment management
- Statistics
- Pre-alarm (arrear, rent at term, abnormal electricity expense)
- System management
- User management

Index

- 1. Architecture of PSEM
- 2. Site solution
- 3. Communication
- 4. Management function

- 5. Application of PSEM
- 6. Roadmap

Power management (Telstra in Australia)

DCV	Day		Night	
	54->48V	<48V	54->48V	<48V
Generator	0	1	0	1
Solar	1	1	0	0
Battery	0	0	1	0

Power management (PT Win in Indonesia)

	Normal	Mains failure/ Phase trip	Trigger Alarm
Mains	1	0	0
Generator	0	1	1
Do	1		
Temp	1		
Fı	1		
A	1		
AC outdoor unit removed			1

Example---Indosat (Indonesia)

Case Study - CMCC (Jiangsu)

Location: East of China

Area: 102,600 km²

Population: 75,495,000

GDP(2006): USD 282 billion (3rd)

Per capita: USD 3,775 (5th)

Growth rate of GDP: 15.4%

Capital: Nanjing

Prefecture-level: 13 divisions

Mobile penetration: 51%

Case Study - CMCC (Jiangsu)

Company Overview:

- 1. BTS number: Over 14,712.
- 2. Subscriber: Over 30 million.
- 3. Revenue(2006): USD 2.5 billion
- 4. Market share: 80%

Monitoring Overview:

- 1. One Supervision Center
- 2. 13 regional Supervision Station
- 3. BTS sites monitored: 14,000+.
- 4. Monitoring penetration: 98%

City / Region	BTS No.	
Suzhou	2352	
Nanjing	2023	
Nantong	1122	
Yancheng	1128	
Xuzhou	1135	
Yanzhou	752	
Taizhou	719	
Huai'an	683	
Zhengjiang	674	
Changzhou	1023	
Lianyungang	803	
Suqian	796	
Wuxi	1502	
Total	14712	

Monitoring Network Topology

Monitoring for Base Station (BTS)

 The highest position of BTS monitored is on Everest . (Altitude 6500 meter)

Network Powe

Business application

Gen-sets Intelligent Distribution System (GIDS)

Shares in China Telecom marketing

 Total 872 suits of monitoring system of PSEM be used for 109572 sites monitored until May,2007.

PSEM System Development Roadmap

